Text Processing
The Scandinavian Embedding Benchmarks: Evaluating Multilingual and Monolingual Text Embedding for Scandinavian languages Kenneth Enevoldsen
The evaluation of English text embeddings has transitioned from evaluating a handful of datasets to broad coverage across many tasks through benchmarks such as MTEB. However, this is not the case for multilingual text embeddings due to a lack of available benchmarks. To address this problem, we introduce the Scandinavian Embedding Benchmark (SEB). SEB is a framework that enables text embedding evaluation for Scandinavian languages across 24 tasks, 10 subtasks, and 4 task categories. Building on SEB, we evaluate more than 26 models, uncovering significant performance disparities between public and commercial solutions not previously captured by MTEB.
Learnability Matters: Active Learning for Video Captioning
This work focuses on the active learning in video captioning. In particular, we propose to address the learnability problem in active learning, which has been brought up by collective outliers in video captioning and neglected in the literature. To start with, we conduct a comprehensive study of collective outliers, exploring their hard-to-learn property and concluding that ground truth inconsistency is one of the main causes. Motivated by this, we design a novel active learning algorithm that takes three complementary aspects, namely learnability, diversity, and uncertainty, into account. Ideally, learnability is reflected by ground truth consistency. Under the active learning scenario where ground truths are not available until human involvement, we measure the consistency on estimated ground truths, where predictions from off-the-shelf models are utilized as approximations to ground truths. These predictions are further used to estimate sample frequency and reliability, evincing the diversity and uncertainty respectively. With the help of our novel caption-wise active learning protocol, our algorithm is capable of leveraging knowledge from humans in a more effective yet intellectual manner. Results on publicly available video captioning datasets with diverse video captioning models demonstrate that our algorithm outperforms SOTA active learning methods by a large margin,e.g.we achieve about 103% of full performance on CIDEr with 25% of human annotations on MSR-VTT.
MINT-1T: Scaling Open-Source Multimodal Data by 10x: A Multimodal Dataset with One Trillion Tokens Anas Awadalla 1,2 Le Xue 2 Oscar Lo1
Multimodal interleaved datasets featuring free-form interleaved sequences of images and text are crucial for training frontier large multimodal models (LMMs). Despite the rapid progression of open-source LMMs, there remains a pronounced scarcity of large-scale, open-source multimodal interleaved datasets. In response, we introduce MINT-1T, the most extensive and diverse open-source Multimodal INTerleaved dataset to date. MINT-1T comprises of one trillion text tokens and 3.4 billion images, a 10x scale-up from existing open-source datasets. Additionally, we include previously untapped sources such as PDFs and ArXiv papers. As scaling multimodal interleaved datasets requires substantial engineering effort, sharing the data curation process and releasing the dataset greatly benefits the community. Our experiments show that LMMs trained on MINT-1T rival the performance of models trained on the previous leading dataset, OBELICS.
MACK: Multimodal Aligned Conceptual Knowledge for Unpaired Image-text Matching
Recently, the accuracy of image-text matching has been greatly improved by multimodal pretrained models, all of which are trained on millions or billions of paired images and texts. Different from them, this paper studies a new scenario as unpaired image-text matching, in which paired images and texts are assumed to be unavailable during model training. To deal with this, we propose a simple yet effective method namely Multimodal Aligned Conceptual Knowledge (MACK), which is inspired by the knowledge use in human brain. It can be directly used as general knowledge to correlate images and texts even without model training, or further fine-tuned based on unpaired images and texts to better generalize to certain datasets. In addition, we extend it as a re-ranking method, which can be easily combined with existing image-text matching models to substantially improve their performance.
Stylebreeder: Exploring and Democratizing Artistic Styles through Text-to-Image Models 1, 3,4
Text-to-image models are becoming increasingly popular, revolutionizing the landscape of digital art creation by enabling highly detailed and creative visual content generation. These models have been widely employed across various domains, particularly in art generation, where they facilitate a broad spectrum of creative expression and democratize access to artistic creation. In this paper, we introduce STYLEBREEDER, a comprehensive dataset of 6.8M images and 1.8M prompts generated by 95K users on Artbreeder, a platform that has emerged as a significant hub for creative exploration with over 13M users. We introduce a series of tasks with this dataset aimed at identifying diverse artistic styles, generating personalized content, and recommending styles based on user interests. By documenting unique, usergenerated styles that transcend conventional categories like'cyberpunk' or'Picasso,' we explore the potential for unique, crowd-sourced styles that could provide deep insights into the collective creative psyche of users worldwide. We also evaluate different personalization methods to enhance artistic expression and introduce a style atlas, making these models available in LoRA format for public use. Our research demonstrates the potential of text-to-image diffusion models to uncover and promote unique artistic expressions, further democratizing AI in art and fostering a more diverse and inclusive artistic community. The dataset, code, and models are available at https://stylebreeder.github.io
A Appendix Overview
We add position embeddings and three kinds of token type embeddings (i.e., word token, context patch token, region patch token) to them. We then apply three layers of transformer blocks to jointly encode the input sequence and take the output [CLS] token to predict the Shapley interaction estimation and corresponding uncertainty, separately.
Learning Spatially-Aware Language and Audio Embeddings
Humans can picture a sound scene given an imprecise natural language description. For example, it is easy to imagine an acoustic environment given a phrase like "the lion roar came from right behind me!". For a machine to have the same degree of comprehension, the machine must know what a lion is (semantic attribute), what the concept of "behind" is (spatial attribute) and how these pieces of linguistic information align with the semantic and spatial attributes of the sound (what a roar sounds like when its coming from behind). State-of-the-art audio foundation models, such as CLAP [7, 44], which learn to map between audio scenes and natural textual descriptions, are trained on non-spatial audio and text pairs, and hence lack spatial awareness. In contrast, sound event localization and detection models are limited to recognizing sounds from a fixed number of classes, and they localize the source to absolute position (e.g., 0.2m) rather than a position described using natural language (e.g., "next to me").
TripletCLIP: Improving Compositional Reasoning of CLIP via Synthetic Vision-Language Negatives Maitreya Patel Changhoon Kim
Contrastive Language-Image Pretraining (CLIP) models maximize the mutual information between textual and visual modalities to learn representations. However, the lack of compositional diversity in contemporary image-text datasets limits the compositional reasoning ability of CLIP. We show that generating "hard" negative captions via in-context learning and synthesizing corresponding negative images with text-to-image generators offers a solution. We introduce a novel contrastive pre-training strategy that leverages these hard negative captions and images in an alternating fashion to train CLIP. We demonstrate that our method, named TripletCLIP, when applied to existing datasets such as CC3M and CC12M, enhances the compositional capabilities of CLIP, resulting in an absolute improvement of over 9% on the SugarCrepe benchmark on an equal computational budget, as well as improvements in zero-shot image classification and image retrieval. Our code, models, and data are available at: tripletclip.github.io.